

Collaborator1

Improve Quality and Morale:
Tips for Managing the Social
Effects of Code Review

Whitepaper

https://smartbear.com/product/collaborator/overview/
https://smartbear.com

Collaborator2

Introduction: Wailing
and Lamentations
Have you seen this before? Your development team

has just been told they need to do code review.

Maybe the mandate is coming from upper

management or from an industry regulation. Or,

maybe even from a visionary (now troublemaker)

on the team itself. And, although everyone agrees

that releasing “better code” is a good thing, the

new initiative to review each other’s code incites a

cacophony of whining, wailing, and lamentation.

Let’s say you’re the group’s manager. Even

though you explain to your team that code

review has been consistently proven to improve

code quality – effectively and efficiently – they’re

still skeptical and reluctant. This reaction is

entirely normal. Developers resist code review

because they associate it with paperwork, meet-

ings, overhead, inefficiency, and criticism. They

often view it as an impediment to productivity

rather than as a vehicle to better understand and

improve the code and its design. So you have a

challenge: how do you get your team on board

so they can reap the benefits of code review?

And, how do you deal with the social issues that

come with criticizing another person’s work?

Getting Started Fast: Focus
Review Efforts at the Beginning

If your team is not already doing code reviews,

it’s a good idea to ease into them by reviewing

only a little bit of the code at the beginning.

Introducing full code review all at once can be

overwhelming to a change-resistant team.

Focus your efforts in the following areas to get

maximum results from code review in the least

time and to quickly demonstrate the benefits:

	| Review changes to the stable branch only.

	| Review changes to the core module that
all other code depends on.

	| Review changes to the “top 10 scariest
files” as voted by the developers.

	| Review only unit tests. If they are complete
and not over-specified, any bugs or other
problems can be fixed safely later.

	| Find problems as you go by reviewing only
changes, not entire files. You’ll still discover

problems around the code being changed,

even if they weren’t relevant to that check-in,

and you can fix them then.

	| Review code whenever developers think
it’s necessary, such as when they have

concerns about a section of code, when a

domain expert can lend specific expertise,

or when they’re working on code they didn’t

write and may not fully understand.

	| If you have a large code base, pick out
files you know are trouble and review
them first.

How do you get your team on board so

they can reap the benefits of code review?

And, deal with the social issues that come

with criticizing another person’s work? This

White Paper provides tips so that managers

and developers can run successful peer

code reviews.

https://smartbear.com/product/collaborator/overview/

Collaborator3

Handling Objections: Legitimate
Fears and Groundless Concerns

Some of your team’s objections to code

review are probably based on myth and

assumptions that are just plain wrong. Other

resistance stems from legitimate fears...but

these fears can be addressed and potential

problems solved before they become issues.

To get your team to participate willingly and

enthusiastically in code review, address their

fears directly:

1. It’s too much hassle. We hate meetings
and paperwork – for many years, code review

involved an extensive framework of cumbersome

printouts and multiple meetings to discuss

points found during review. Often the whole

team attended these meetings, which seemed to

never end. Today, code review can be conducted

with software tools that make it pain-free and

even fun. With a tool, developers do code review

online at a time that’s convenient for them. They

review the code, make comments directly on

the relevant code snippets, and carry on chat-

style conversations with colleagues in the next

cube or on another continent. The code review

tool automatically gathers metrics that the team

can use to produce any necessary reports. No

meetings, no paperwork, no overhead, no pain!

2. Code review will ruin our team culture.
Some people will be jerks about code review
and use the opportunity to terrorize others.
The goal of code review is to make the software

as bug-free as possible, and to teach and learn

in the process. When the right attitudes are set

up front, most teams unite around the concept

of becoming a better team, learning from others

to become better developers, and producing

better products! In our experience, code review

almost always brings teams together rather than

divides them. It gives developers a framework for

communication, which is a very good thing. Once

they start communicating online, it’s amazing how

much better they work together in person.

Of course, occasionally team members use

code review as an opportunity to try to establish

superiority over others. “I found bugs in your

code! That must mean I’m smarter than you!

In fact, clearly you’re an idiot.” This attitude is

obviously not productive. By fostering a culture

of respect and open communication, you can set

the tone for more positive attitudes. Everyone

makes mistakes, and these mistakes should be

viewed as opportunities to learn and mentor.

Another common problem team member is the

“control freak,” who uses his or her seniority or

greater experience to terrorize less knowledgeable

team members. A good technique for getting

this personality type to play nice is to explain to

the tyrant that he is a teacher, a guru, a guide, a

mentor to everyone else. Teachers don’t berate

their pupils; they take pride when pupils learn

at their knee. This approach lets your control

freak retain control and status, but in a helpful

way. If you set the stage right, code review

doesn’t ruin your team culture – it improves it!

3. I don’t like to be criticized. Writing code is an

art, and developers put their souls into creating

beautiful programs. Like anyone else, they can

be sensitive when problems are pointed out. A

similar situation exists for writers: you wouldn’t

publish a book without at least one person editing

your work, because mistakes happen. Even the

best authors have editors. You can’t see your

own mistakes – not when writing prose, not when

writing code.

https://smartbear.com/product/collaborator/overview/

Collaborator4

6. Big Brother is now watching and grading me
on my defects! – Tool-assisted code review is great

about capturing metrics about defects. These metrics

are crucial to measure and improve the process, but

they can be used for good or ill. If your team thinks

they’re being evaluated based on the code review

metrics, they’ll likely focus on tasks that improve the

metrics rather than those that improve the code. And

they won’t feel comfortable with the review process.

This fear is not difficult to combat. Simply make it

clear to the team that they will never be graded

on how many defects their code has (and carefully

follow this policy). “Number of defects introduced

into your code” is not an accurate way to evaluate

someone anyway: the more senior developers

will likely be working on new code, more complex

code, and code with many changes...all of which

are likely to have more bugs. In addition, this

code is likely to (and should) be more carefully

reviewed... and the more a piece of code is

reviewed, the more bugs are likely to be found.

So make sure your team understands they won’t

hear about their bug rate during reviews, because

the goal is to review the code – not the coder!

Another great way to combat “Big Brother” concerns

is to reward defects as a successful team result of

both author and reviewer. You can even create a

“leader-board” to track who finds the most defects.

Thus a potential penalty is converted into a reward.

One of the best things about code review is that

it substantially improves team communication.

Before you start reviews, put an environment in

place that fosters and encourages communication

and respect. After you debunk the myths and set

the right attitude for code review, you’ll likely be

surprised at how successful it is for your team.

With an extra pair of eyes, the output is

better in the end. In fact, many developers

(and writers) actively seek others’ feedback

when working on something particularly

difficult or new to make sure they get it

right. The trick is to make sure code review

suggestions are given in a positive way.

4. We don’t want to change our process.
Many teams are resistant to change. To these

folks we say, try just a little change for just a little

while! Try code review for a week, capture metrics

on how many bugs are found vs. the amount

of time spent, and let them see the positive

results. Then ask how they feel about continuing

with it. A trial period is the perfect non-

threatening way to let your team see immediate

benefits without feeling like more unpleasant

processes are being thrust upon them.

5. Code review takes time we don’t have,
and we’ll miss our deadline! This one only

takes a moment to think through. If you have

time to go back and do it again later! The time

(and reputation) cost to fix a bug once the

software has gone to customers – or even QA –

is substantially larger than when you catch it in

review. If you’re really pressed for time, at least

selectively do code review: only review the most

complex sections, those with the most changes,

and those the developers feel are highest risk.

“The benefits of inspections are so profound that

even the smallest outfits must take advantage of

this technique.”
– Jack Ganssle, Consultant/Columnist

Ganssle Group

https://smartbear.com/product/collaborator/overview/

Collaborator5

company reputation and saving the cost of fixing

the problem)!

	| Unites teams over the concept of a better
overall product, and gives them reasons
to talk to each other and improve working
relationships. Team members enjoy learning and

teaching, and everyone gets the feeling that the

whole development organization is accelerating.

Tips for Managers

If you’re a manager, your most difficult task is

probably dealing with your team’s emotions and

human interactions. To ensure positive interactions,

it’s your job to set the tone for code review. The

following guidelines can help you get code review

started on the right foot to ensure team acceptance

and ultimate success.

1. Make sure everyone (including you) under-
stands that code review is all about the code,
not the person. The point is to eliminate as many

defects as possible, regardless of who introduced

them, and to learn to be better programmers in

the process. Make it clear this is about the whole

team producing a better product and learning

and becoming better developers. It’s not about

who’s the smartest, or who finds (or introduces)

the most defects. Code review isn’t personal.

2. Encourage team members to review
different people’s code so everyone can
get to know others and their styles. By

exposing everyone on the team to everyone

else, this technique encourages maximal

sharing of knowledge and learning.

3. Big Brother is not watching you. Never

use metrics from code review as part of your

team’s performance evaluations. Make it clear

to the team that review statistics such as

number of code defects will never be used in

Why Review Code?

If you’re reading this paper, you probably

already know that code review finds bugs

when it’s cheapest to fix them – before the

software goes to QA or to customers.

But it does many other great things too:

	| Finds and fixes maintain ability issues such as

documentation, organization, architecture, usability,

efficiency, robustness, maintainability, and portability.

All of these things affect overall code quality.

	| Trains developers to spot errors they might miss,
and makes them much more cautious about their
check-ins.

	| Provides real-time feedback on code while it’s still
fresh in people’s minds, rather than six months later

when a customer finds a bug.

	| Teaches both reviewers and author’s new tricks.
Reviewers can learn when they see new techniques

and good habits in code, and authors learn from the

feedback they receive.

	| Makes engineers more familiar with parts of
the code base they might never see otherwise,
breaking down the “my code/your code” silos

and giving your engineering team much broader

exposure to the entire codebase.

	| Provides a vehicle to educate junior team
members, mentor others on the team, and
make the whole team more competent on
all of the code, rather than having just one
or two experts on each section. By educating

everyone, you raise your “bus factor” (the number

of people who would have to get hit by a bus –

or otherwise become unavailable – before your

knowledge base about your code is crippled).

	| Saves developers humiliation later when bugs
go out to customers (not to mention preserving

https://smartbear.com/product/collaborator/overview/

Collaborator6

reviews. You want them to be comfortable with the

process, not resentful or suspicious of it. Besides

being counterproductive, evaluating people on the

number of bugs they introduce or find is inaccurate.

“Hard” code inherently has more defects. In addition,

studies show that the more time a developer

spends reviewing code, the more bugs they will

find. [For details on these studies, get our free

book, Best Kept Secrets of Peer Code Review.

4. Explain to the team that you want them to
find defects. The more the better. Each defect

they find is another one that doesn’t clog up the QA

pipeline, or worse, get into the customer’s hands.

Another bug that doesn’t cause a maintenance

nightmare or a complete code rewrite later, months

after layers have been added on top of it.

5. If someone is not approaching code review
with the right attitude, don’t single him or her
out. Calling the person out in front of the team

will likely cause more trouble than it fixes. Instead,

address the team as a group and remind them

that finding defects is a good thing and that defect

density does not correlate to developer abilities.

6. Leverage the Ego Effect by always reviewing at
least some code. When developers know that their

peers will be reviewing their code, they instantly

become better developers due to a simple

phenomenon we call the Ego Effect. They don’t want

their colleagues catching their silly or repetitive

mistakes, so they give their code a quick review

themselves before checking it in and they pay a little

closer attention as they work – so you get better

code before reviews even happen. The Ego Effect

works even if your team doesn’t have time to review

all code. As long as your team is doing spot checks

and reviewing some code (maybe 25%), the Ego

Effect will make your developers more careful.

Try code review for one week,
measure actual results, and
evaluate the benefit for your team:

Not sure if code review is worth your team’s time

or if they’ll accept it? Try it for a week, measure

the results, and make an informed decision.

	| Download a free evaluation copy of
CodeCollaborator, the premiere code
review tool from SmartBear Software.

	| Have your team spend 25 minutes per
day reviewing code for one week

	| Encourage them to have fun with the
process, help each other, and embrace
the opportunity to learn and teach

	| Directly measure the value of code review
by examining bugs found vs. time spent.
Using a report produced by CodeCollaborator,

count the number and type of defects you find,

and note the amount of time your team spent

doing reviews (CodeCollaborator tracks all

these details automatically). Divide the amount

of time spent by the number of defects found

to find the amount of time spent per bug.

Most companies find and fix one bug for every

10-15 minutes spent doing reviews. How much

would each bug cost to fix if it went to customers?

“When we introduced [SmartBear Software’s code

review tool] CodeCollaborator, it was like someone

broke the ice in our group... As a result, now we

collaborate more often to design and test features

as well as review them.”
– A. Kalvanavarathan, Manager

https://smartbear.com/product/collaborator/overview/
https://static1.smartbear.co/smartbear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf
https://smartbear.com/product/collaborator/free-trial/

Collaborator7

Tips for Developers

If you’re a developer, you almost certainly take pride

in your code and in your knowledge. Someone’s

criticism – even constructive criticism – can be hard

to take. While you know it provides an opportunity

for growth, criticism can still hurt your feelings

or even embarrass you in front of the team. The

following tips set the stage for you as both reviewer

and author. They will help you accept other

people’s feedback as well as deliver suggestions

in a positive fashion that encourages learning.

1. Remember that you’re critiquing code,
not the coder. Make sure your tone is not personal

and that it’s clear your intent is to improve the code,

not belittle, lambaste or take shots at its author.

Taking a teaching or mentoring attitude helps

immensely.

2. Offer generous amounts of praise. Even if you

find a lot of problems with someone’s code, surely

you can also find some good things to comment

on. Positive comments remind the coder that

even though they may have much to learn, they

still add value. And inserting some complimentary

comments takes the sting out of the corrective

ones. One good way to set the tone of a review is to

put a summary comment at the top of the code that

includes positive feedback.

3. Be respectful to – and patient with –
everyone, especially team members who aren’t
as knowledgeable or experienced as you. Use

the opportunity to teach them. This approach

makes the whole team better, they won’t forget the

kindness, and they’ll return your respect in spades.

4. Remember that everyone – even you – makes
mistakes. You’re human like the rest of us, and

we all mess up sometimes. By all means, try to

minimize your errors. But go easy on yourself

and others when it happens, and focus on the

opportunity to improve rather than berate.

5. Take advantage of the opportunity to
learn from others. No matter how much you

know, you can always learn new tricks and

techniques from your teammates. Embrace

the chance to expand your knowledge.

6. Review your own code and create a checklist
of the problems you frequently make. Before

you send your code for review, check your own

code for the errors on the list. This way, your

colleagues don’t find as many errors and they don’t

see you making the same mistake over and over.

After a while, you’ll stop making those mistakes (a

wonderful thing!), so update the list occasionally.

7. To lessen a criticism’s sting, ask a question
instead of making a statement. Asking for

the author to explain their reasoning behind

something acknowledges that you respect them.

“What was your thinking in using this function call

instead of that one?” is much less confrontational

than “This is the wrong function call. Use the

other one.” Asking a question also gives you the

opportunity to learn – perhaps their thought

process included a technique you didn’t know or a

reason hadn’t considered!

8. Avoid asking accusatory “Why” questions.
Instead of saying, “Why didn’t you...” ask something

like, “What did you have in mind when you...?”

The tone of the ensuing conversation is now

entirely different. Not only does it avoid inherent

accusations, this approach opens the door for

dialog andlearning.

“Our team balked at doing code reviews at first.

Now we can’t imagine working without

Code Collaborator.”
– Brian Toombs, Lead Developer,

Cisco Systems

https://smartbear.com/product/collaborator/overview/

9. When disputes arise, win and lose gracefully.
Don’t rub in your victories or sulk and pout if you

were wrong... this behavior sets the stage for more

confrontational interactions later. And remember it’s

about the code, not the person.

Tool-assisted code review makes it much easier

to deliver review feedback more gently than an

“over the shoulder” review or one in a meeting. You

can review your comments before you send them

to ensure that they reflect a positive tone, show

respect and do not imply personal criticism.

Conclusion: Code Review Improves
Quality and Morale

There’s no question that code review improves

overall code quality (including design, structure,

comments, maintainability, documentation,

and unit tests) and reduces the number of

defects that go to QA and to customers.

And when executed with the right attitude, code review

also has extremely positive effects on teams and their

personal interactions. We’ve worked with hundreds

of teams that have implemented code review, and

they report a variety of unexpected benefits:

	| Code review creates an environment
where developers work together instead
of in parallel. By creating a venue for easy

communication, it encourages conversation so

developers don’t work in their own little silos...

even if they work on different continents.

	| Developers unite over the prospect of a
better team and better code. The team picks

up momentum as the product quality continues

to improve. And, everyone’s pleased that their

development skills are improving too.

	| The team has fun and interacts more in person.
Tool-assisted code review leaves plenty of room for

humor and play. Now, team members who didn’t

know each other well can establish common ground

and start to get to know each other online. Once

the team starts communicating and joking online,

they tend to work better together in person too.

Start Your Free Trial Today

About SmartBear

At SmartBear, we focus on your one priority that never changes: quality. We know delivering quality software over and

over is complicated. So our tools are built to streamline your process while seamlessly working with all the tools you

use – and will use. Our tools are easy to try, easy to buy, and easy to integrate. We’re used by over 16 million developers,

testers, and operations engineers at over 24,000 organizations. Wherever you’re going, we’ll help you get there.

https://smartbear.com/product/collaborator/free-trial/

